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Abstract-A phenomenological model is developed for particulate flows in pipes. The gas-solid mixture is 
modeled as a variable density, variable heat capacity fluid with the solid phase contributing to fluctuations in 
the mean properties of the flow. The momentum and energy equations are developed for the steady-state flow 
of such a fluid, and when averaged, several new terms appear that emanate from the fluctuation products. 
Simple ditfusivity theory is used to obtain closure equations for the last terms. Finally, the resulting ordinary 
differential equations are solved and results are obtained for the heat transfer coefficient of the gas-solid 

mixtures. 

INTRODUCTION 

PARTICULATE flows have been used since the 1920s for 
the transportation of solid materials. The subject of 
heat transfer in particulate flows came into scientific 
prominence during the 1950s when seeding the flow 
with solids was considered as a heat transfer 
augmentation technique. During that time, experi- 
mental work by Farbar and co-workers [l, 21, 
Dansinger [3], and Tien and Quan [4,5] established a 
data basis and experimental correlations for the heat 
transfer coefficients of air-solid mixtures. A review of 
the subject [6] gives an account of the major projects 
undertaken before 1966. Since then a comprehensive 
review by Depew and Kramer [7], and papers by Briller 
and Peskin [8] and Shrayber [9], have added to the 
scientific knowledge on the subject. Numerical studies 
[lo] provide alternative methods to obtaining 
engineering results. 

The attempts to use solid particles in order to 
augment the heat transfer in fluids were abandoned, 
because of erosion and cleaning problems. However, 
the subject of heat transfer in particulates is still ofgreat 
interest in pneumatic conveying applications, drying of 
solids [ll], as an approximation to the heat transfer in 
mist flows [12] and also in fluidized bed applications. 

The objective of this work is to develop and test an 
analytical model, which would predict the heat transfer 
characteristics of particulate flows from low to 
intermediate loadings (up to m* = 10). The model is 
based on the phenomenological approach, which treats 
the flowing mixture as a turbulent, single-phase fluid of 
variable density and heat capacity. The substance flows 
in a circular duct and exhibits variable local density and 
heat capacity. 

It is known from experiments that in vertical pipes 
the concentration of the solids is symmetric and that it 
is well approximated by a parabolic curve [ 13,141. The 
pressure acts in the longitudinal direction and the 
pressure gradient in the radial direction is zero. The 
variation of local density with the velocity gradient 
gives rise to an extra term in the Reynolds stresses 
(pu&), which contributes to the shear stress of the 

flow [15, 163. Similarly the density and heat capacity 
variation in a cross-section of the flow contribute 
certain terms in the heat transfer equation ; these terms 
are accounted for here. Appropriate closure equations 
are obtained for the added terms in accordance with 
diffusivity theory. The resulting expressions for the 
momentum and heat transfer are solved numerically to 
yield the velocity and temperature profiles, the shear 
stress and the heat transfer at the wall. 

The same approach to modeling particulate flows 
has been tested before with good results for gas-solid 
systems [16] and liquid-solid systems [17]. Here, the 
approach is extended to include the heat transfer of 
suspensions. As a phenomenological model it yields 
accurate results for the time-average quantities such as 
velocity, density and temperature profiles, friction 
factors and heat transfer coefficients. However, it does 
not reveal the behavior of individual particles and does 
not answer any questions about particle interactions. It 
is a simple mechanistic model that would be of value to 
engineers and to designers of pneumatic conveying 
systems. 

2. PROBLEM FORMULATION 

This study examines the steady-state flow and heat 
transfer of a gas-solid mixture with constant heat flux. 
The flow is taken to be axisymmetric. This assumption 
is valid in vertical and horizontal flows of high Froude 
numbers based on the shear velocity of the flow and 

particle diameter (Fr* = V*/&). Thus, horizontal 
flows of particles where dunes are not formed and 
notable lack of symmetry is not observed will be 
represented by the proposed model. 

The boundary conditions of the momentum and 
energy equations for pipe flows show that the problem 
has two dimensions r and z. Given that steady flows 
are ofinterest, it appears that temperature and velocity 
gradients with respect to z are much smaller than those 
with respect to r. Changes in the longitudinal direction 
are much slower than changes in the radial direction 
and, therefore, all derivatives with respect to z (except of 
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NOMENCLATURE 

CP specific heat capacity 
d particle diameter 
Fr Froude number 

I 
gravitational acceleration 
heat transfer coefficient 

I,, I,, I, integrals 
k thermal conductivity 
1 length scale 
m* mass flow ratio 
Nil Nusselt number 

P pressure 
Pr Prandtl number 

4 rate of heat transfer per unit area 
radial distance r 
pipe radius r. 
Reynolds number Re 

T temperature 
ATn bulk temperature difference 
u longitudinal velocity 
V transverse velocity 
V* shear velocity 
x dimensionless radial distance 

Y transverse dimension 

Yo thickness of boundary layer 
Z longitudinal dimension. 

Greek symbols 
u area ratio 

Y density parameter 
6 specific heat ratio 

% diffusivity of variable 4 

IJ gas viscosity 

P density 
r shear stress. 

Subscripts 
G gas 
S solid 
W wall. 

Superscripts and other symbols 
time average 

< > space average 
S superficial 
* pertaining to V* 
, perturbations 
+ dimensionless. 

pressure gradients) may be omitted in the conservation 
equations. This assumption has been used in aero- 
dynamics and particulate flows with success [16]. In 
the absence of radial pressure gradients the resulting 
form of the momentum equation becomes : 

which yields : 

rdp du B ’ --= 
2 dz flz--z’+; o 

s 
pr dr. (2) 

The Reynolds stress r’ may be written : 

7’ = -(npT+~UT+pni7J (3) 

The third term on the RHS of equation (3) represents 
a triple product of the fluctuation and may be neglected 
in comparison to the other terms as in refs. [16] and 
1173. Thus, the shear stress at the wall may be written : 

r dii 
?“r, = pdr+tipT+puT 

-g{ijrprdr-iJ:prdr}. (4) 

The energy equation may be written in a similar way 
when expressed in terms of the heat flowing inside an 
annulus of radius r : 

q = kg+&“+(T-Tw)pcT 

+(T- T,)c,pT (5) 

Primed terms in equations (4) and (5) represent the 
time fluctuations of the variables, while the terms with a 
bar represent the time averages. Again third-order 
fluctuation products are neglected. 

Equation (5) shows that the heat transfered by gas- 
solid mixtures is augmented because of the appearance 
of the last two terms, which emanate from the variable 
density and specific heat of the mixture. These terms 
may be considered as the contribution of the solid 
particles to the heat transfer when they move randomly 
in the radial direction. In the present model this random 
motion of the particles is regarded as an added 
contribution to the turbulence of the single-phase 
variable-density fluid under consideration. 

3. CLOSURE EQUATIONS 

A glance at the resulting equations (5) and (6) shows 
that closure equations are needed for the expression of 
the time-average products iii m pTand CT In 
single-phase flows several turbulence modeling 
techniques provide such closure equations for the 
average of perturbation products. Of these techniques, 
Prandtl’s mixing-length hypothesis [18] yields ac- 
curate predictions for the heat and momentum transfer 
in pipes. However, terms such as pT or c? are 
uncommon in the incompressible flow literature. This 
creates the problem of deriving suitable closure 
equations for them. In addition, one expects that the 
known terms (UT and m) may need different 
expressions in the particulate flows for accurate 
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predictions. The problem would have been easier if one 
had access to experimental data for all the perturbation 
products in particulate flows, but no such data are 
available at present. For this work it was decided to 
resort to expressions emanating from an eddy 
diffusivity hypothesis and adopt closure equations 
consistent with the theories of single-phase flows. Thus 
any fluctuation product term v’;is: is written as : 

d6 VT= -Eg - 

dy 
where Ed is the diffusivity of the quantity 4. 
Subsequently the diffusivity E+ is approximated by two 
length scales I, and 1, (similar to the mixing length) and 
the gradient of ii : 

(7) 

Equations (6) and (7) yield upon substitution of 
y = r’o-r: 

vv=-, ,*dd;drs 
aa dr dr’ (8) 

Therefore, the closure equations for the unknown 
fluctuation products become : 

(8a) 

pT=_, , !PE 
” dr dr 

CT=-, 
P 

, d”P!!! 
+” dr dr 

m=_, , !E!f 
” dr dr’ 

Of the length scales in equations (8a)-(8d), 1, is well 
known in single-phase flows where it is sometimes 
referred to as Prandtl’s mixing length. Of the others, IT 
also appears in the heat transfer equations in single- 
phase flows. The ratio l,/lT (also called turbulent 
Prandtl number, PrJ is approximately equal to 1 in 
tubes (Reynolds analogy) [19]. The other length scales 
1, and lc, are unknown and their actual values may only 
be deduced from experimental results. Both of these 
variables appear because of the random motion of 
particles in the fluid. Given that they are manifestations 
of the same phenomenon (motion of particles) they 
must be equal, that is I, = I+. Because of lack of 
experimental data that would yield either of them, it is 
assumed here that they are both proportional to 1, with 
the constant of proportionality being a function of the 
solids content : 

lp = lc, = f(m*)l”. (9) 

The function f(m*) is to be determined later from 
comparison with experimental data. 

The value of 1, is obtained by the Nikuradse equation 

[20] which yields accurate results for the single-phase 
pipe flows : 

1” = r,[0.14-0.08(r/r,)z-0.06(r/ro)4]. (10) 

As stated above, IT = 1, and lp and lc, are given by 
equation (9). Equations (6)-(10) complete the choice of 
closure equations for the present model. 

4. THE DENSITY PROFILE 

In all particulate flows the gas phase is continuous 
and the solids are dispersed. Experiments by Soo et al. 
[13,21,22], Spencer et al. [14] and Peskin [22] show 
that, in the absence of electrostatic effects, the solid 
phase will concentrate towards the center of the pipe. 
This is especially valid for the high-Froude-number 
flows considered in this work. Therefore, the time- 
average density p will be close to the gas density at the 
wall of the pipe and will attain its maximum value, pm, 
at the center. Of course, this density pm and the general 
density distribution depend on the mass flow rate of 
solids in the flow. Correlations of experimental data 
[ 16,22,23] indicate that a suitable expression for the 
density distribution is : 

(11) 

where m is approx. 0.5 (it varies between 0.4 and 0.6) and 
y is a parameter depending on the mass flow rate of 
solids. The space-average density of the flow (p) may 
be obtained by integrating equation (11) 

2 

s 

10 
(P)=~ prdr= %JGc(1+Y)m+2-11 

r. o y2(m+l)(m+2) 

2Pci 
-y(m+ (12) 

If one is interested in the local time- or space-average 
volumetric percentage of solids (6 or (a)), this may be 
obtained from the density distribution function : 

a _ P--P, 
(13) 

PS-PG 

(a) = (P>_ 

h--PC 
(14) 

From the density profile one may easily deduce the 
specific heat profile for the fluid under consideration. 
The expression for the specific heat becomes : 

where 6 is the ratio of specific heats (6 = c&+,). 
The derivatives of the density and specific heat 

capacity needed for the closure equations may be easily 
obtained from 

!$_y(l+yy)=l (16) 
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and r x 

G(x)= p+x dx, 
Jo 

x = r/To, 

(24~) 

(244 
d”P= PG dP 
dr 

c 
p&&$(6-1). (17) 

5. MOMENTUM AND HEAT TRANSFER 

EQUATIONS. DIMENSIONLESS FORM 

Under the stated assumptions for the closure 
equations the shear stress and heat transfer equations 
for the model become : 

and 

-(T-T 
w 

),7f(m*)j2 dE, !!! 
” dr dr 

-(T-Tw)c,f(m*)12 g % 
” dr dr (19) 

For computational simplicity the shear stress and heat 
transfer equations above will be derived in dimension- 
less form. Time-average dimensionless variables 
appear with a ‘+’ superscript and are defined as 
follows : 

p+ =;, 

CP c; =-, (21) 
c 

PG 

(V* is the shear velocity of the flow) and, 

(22) 

c “*PG T+ = (T-T,)=. 
4W 

(23) 

Thus, the momentum equation written in terms of 
shear stress appears as follows : 

+ -~_-!-&_I(t12+f(m*)~!g 

x G(l)-; G(x) 1 , (24) 

where 

rOv*PG &* = - 

P ’ (244 

Fr* = V*J&, (2W 

and 

I+ = ItJr,. 

Similarly the heat transfer 
follows in dimensionless form : 

H(x) 1 dT+ -__ =-_ 
H(1) Re* Pr dx 

(244 

equation appears as 

dT+ du+ dc; du+ 
-p+c;12+ --&- dx -p+T+f(m*)P+ dx dx 

dp+ du+ 
-c,‘T+f (m*)l’+ dx dx, (25) 

where 

X H(x) = 
s 

c; p+u+x dx, (25a) 
0 

and the Prandtl number has its usual significance : 

pr =!!!E 
k ’ (25’4 

6. SOLUTION OF THE 
WORKING EQUATIONS 

A glance at the final form of the shear stress and heat 
transfer equations (24) and (25) shows that they are a 
system of coupled non-linear ordinary differential 
equations in u+ and T+. Actually equation (24) is a 
quadratic equation in du+/dx alone and its algebraic 
solution yields the derivative of the dimensionless 
velocity : 

du+ 
-z.z 

-B+Jm 

dx 2A 
(26) 

where 

A = p+l’+, (264 

Wb) 

and 

C= -x+& xG(I)- ;G(x) . 1 (26~) 

Given the form of the density function and the fact 
that the flows examined here are of high Froude 
numbers (Fr* > l), C and B are always negative while A 
is positive. It follows then that the above equation 
always has one negative root which is of interest here 
and is given by the following equation : 

du+ -B-JB’-4Ac 

dx 2A 
< 0. (27) 

Integration of equation (27) yields the velocity 
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distribution of the flow in the cylindrical pipe. The 
parameters Re* and Fr* are determined by iteration as 
will be explained in the next section. 

The determination of u+ and du+/dx, in effect, 
decouples the heat transfer equation from the shear 
stress equation. When the dimensionless velocity and 
its derivatives are known, equation (25) yields a first- 
order non-linear ordinary differential equation for the 
temperature gradient dT+/dx : 

dT+ 

dx 

- H(x)+T+lZ+f(,#) 
H(1) 

p+ g+c; “d9: “d”; = 
du+ 

) . 
1 

Re* Pr 
-p+g+ dx 

One may observe in the above equation that the 
added terms due to the density and specific heat 
capacity fluctuations tend to decrease the absolute 
value ofthe temperature gradient. This means that for a 
given heat transfer at the wall of the pipe the resulting 
temperature difference is always less than that required 
for the pure gas flow. Then the heat transfer coefficients 
and the Nusselt number will be higher in particulate- 
laden flows. 

The boundary conditions for equations (27) and (28) 
are derived from the fact that II+ and T + are zero at the 
wall of the pipe (x = 1). Near the wall, however, there is 
a laminar sublayer of thickness y, where viscous forces 
dominate the flow. In this thin sublayer, laminar 
equations of motion are valid and the concentration of 
particles is very small. The solution of the laminar 
momentum and energy equations yields the following 
expressions for the dimensionless velocity and 
temperature in the sublayer : 

u+=1-x, l>x>l-y,+, (29) 

and 

T+ = Pr(l-x), 1 > x > 1-y:. (30) 

Therefore, the boundary conditions for equations 
(27) and (28) are : 

u+(Yo+) = Yo’3 (294 

T+(y,+) = y; Pr. (304 

The integration of the differential equations as 
supplemented by the above boundary conditions is 
accomplished by the Rung*Kutta method. The 
velocity profiles may be compared with experimental 
data from [7]. This comparison is shown in Fig. 1; it is 
evident that there is very good agreement between the 
data and the results obtained from the present model. 
Temperature profiles as derived in the present study are 
shown in Fig. 2. There are no available experimental 
data on temperature profiles to be compared. 

Kramer [24] deduced from experimental data the 

05 
Distance from Wall, y*= w 

ye 

FIG. 1. Comparison of velocity profiles with data from ref. [7]. 

values for the suspension eddy diffusivity E,. Some of 
his data for particles of 62~ are compared to values of 
eddy diffusivity obtained from this model in Fig. 3. The 
abscissa in the last graph is the dimensionless form of 
the eddy diflusivity : 

+ E, T 
E, c-c 

r,V* r,,V*p diijdr * (31) 

Again it may be seen that there is good agreement of 
data and results from this model. 

7. AVERAGE QUANTITIES OF 
INTEREST 

In the case of pipe flows, the space-average velocity, 
mass flux and bulk temperature difference are 
quantities of practical interest : 

(u) = $ 
j 

: tir dr = V*Il, (32) 

2 

s 

r0 
(G) = 1 $3 dr = V*p,l, (33) 

r. o 

O5 
Distance from Wall, y+= v 

FIG. 2. Temperature profiles for several loadings. 
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FIG. 3. Eddy diffusivity comparisons with data from ref. [24]. 

and 

2 

s 

ro 
AT, = 

pot,, F*ri 
pE,ti( T, - i’)r dr 

o 

=*. (34) 

The integrals I,, I,, and I,, are dimensionless and may 
be evaluated from the known dimensionless velocity 
and temperature distributions. In terms of the above 
space-average quantities, the superficial velocities of 
the solids and gases may be written as follows [16,25] : 

v” = v* &@I -PC12 
G 

Ps-PC ’ 
(35) 

and 

G = y*p,(I,. (36) 
PS--PG 

The ratio of mass flow rates m* is : 

m+ = ps 
II--II 

Pd, - PC12 ’ 
(37) 

Finally, the heat transfer coefficient for the flow, h is : 

h _ ;; _PGcyV*, (38) 
B 3 

and the Nusselt number becomes : 

Re*Pr 
Nu+L2_. 

13 
(39) 

In a flowing gas-solid mixture, the ratio of the mass 
flow rates m*, the dimension r0 and the superficial gas 
velocity pG are known, as well as the thermodynamic 
properties of gases and solids. In general, y (for the 
density profile) and V* are unknown. The solution for 
the set of equations (35), (37) and (39) is achieved by 
iteration according to the following procedure : 

(a) Values for V* and y are assumed. 
(b) Fr*, Re* are calculated according to the above 

values. 

O-4 

(4 

Equations (27), (28), (32)-(34) are integrated 
simultaneously by the Runge-Kutta method to 
yield the dimensionless velocity and temperature 
distributions as well as the integrals I,, I, and I,. 
A check is performed to see if equations (35) and 
(36) are satisfied for the known values of Vso and 
m*. If not, V* and 6 are modified and steps (b)-(d) 
are repeated until agreement of 1% for the values of 
VS, and m* is achieved. 

Convergence of the solutions happens very quickly 
and in general the whole iterative procedure takes less 
than 20 s CPU time on a VAX 11/780 system. It 
appears, therefore, that the evaluation of the heat 
transfer coefficient by this method is a very economical 
way to solving the conservation equations for the two- 
phase mixture. 

Regarding the function f(m*), its final expression 
evolved from comparison of the results obtained with 
the correlation B derived by Pfeffer et al. [6]. 

h 
- = 1+4-Re,0.32&n* 
h, 

The comparison showed that f(m*)may be given as a 
quadratic function of m* : 

f(m*) = 0.03 1 - O.O7Om* + O.O45m**. (41) 

8. COMPARISON WITH EXPERIMENTAL 
DATA AND CORRELATIONS 

As indicated before, there are several known 
experimental studies on the subject of heat transfer in 
particulate flows [l-4, 7, 26-28-J Due to the large 
number of parameters involved, the effects of radiation 
and other experimental uncertainties, some of the 
studies appear to be less reliable than others [6]. It is 
commonly agreed, however, that the most important 
parameters are Re,, Pr, m* and 6 (sometimes the latter 
two appear as the product m*6). Particle size does not 
enter the correlations; it appears in fact that it plays a 
minor role in the total heat transfer coefficient as 
indicated in Pfeffer et al.‘s survey [6]. 
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I I 1 I I I I I I I c 

0 I2 3 4 5 6 7 0 9 

Solids Loading, m* 

FIG. 4. Comparison of Nusselt numbers with data from ref. [2]. 

It is common practice to present in data or 
correlations the ratio of Nusselt numbers for particle 
flow divided by that of gas-only flow : 

NU Nu(ReG, Pr, m*, S) 

Nu, = 0.023Re$8Pr0.4 ’ (42) 

The results obtained by the method described in this 
paper are compared with experimental data and 
correlations. Figure 4 shows comparisons with 
experimental data from Farbar and Depew [2]. The 
same type of comparison is made in Fig. 5 with data 
from Dansinger [3]. It may be seen that there is good 
agreement of individual data sources and the results of 
the present method. 

Next, comparisons are made with correlations 
derived from experimental data. As such, the 
correlations evolving from the works of Farbar and 
Morley [l], Wachtel et al. [28] and Pfeffer et al. [6] 
(correlation B) were chosen. The last one is derived from 
several sets of experimental data and represents a 
‘middle of the road’ correlation. The results of this 
comparison are shown in Fig. 6 as ratio of Nusselt 

numbers, vs m*6, and in Fig. 7 vs Reynolds number. 
Again it is observed that the method presented here 
agrees reasonably well with the experimental 
correlations. Here it must be emphasized that the good 
fit with the Pfeffer et al. correlation [6] is due to the 
choice of the function f(m*). However, the results are 
not very sensitive on the choice of the last function; 
fairly good agreement with data and correlations is 
obtained even if this function has the value of unity. 

It may be observed in Fig. 7 that the present results 
approach the value 1 at large Reynolds numbers in 
agreement with data from ref. [S]. 

The present model is purely a phenomenological 
one ; it yields useful results about the space-average 
flow coefficients but it does not answer any questions 
pertaining to the interactions of particles and the 
complex phenomona associated with exchange 
mechanisms between the two phases. The subject of 
air-solid mixtures is a complex one and a detailed 
description of the flow field would involve a large 
number of variables. It is not within the scope of this 
paper to include a discussion of all these variables. At 
this time it suffices that the results of this study may be 

Re = 20,000 

I_ I I I 1 1 I I I , 

2 3 4 5 6 7 s 9 IO 
Solids Loading, m* Weighted Specific Heat Ratio, m*S 

FIG. 5. Comparison of Nusaelt numbers with data from FIG. 6. Results from present work as compared with 
ref. [3]. experimental correlations. 
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m*S=6 5. 

6. 
Schluderberg et al 

7 

Reynolds’ Number, Re 

FIG. 7. Comparisons of results from present work with 
experimental correlations. 

9, 

10. 

obtained in a simple way and appear to be accurate 
enough despite the mechanistic approach to the 
modeling of two-phase systems. 11. 

9. CONCLUSIONS 

A model is developed for gas-solid flows based on a 
phenomenological approach. The presence of particles 
is taken to contribute to the flow perturbations, thus 
adding fluctuation terms to the density, temperature 
and specific heat capacity. When the convervation 

equations for such a fluid are averaged, several 
additional terms appear in the momentum and energy 
equations. These terms tend to increase the friction 
factor and heat transfer coefficient of particulate flows. 
Closure equations similar to the eddy diffusivity 
expressions are used to model these additional terms. 
Certain parameters such as mixing lengths are either 
determined from their values in single-phase flow or 
from an optimization procedure. These mixing lengths 
should better be inferred from experimental data. 

When the energy and momentum equations are 
solved one may easily obtain Nusselt numbers, average 
velocities and friction factors as functions of the mass 
flow ratios, Reynolds numbers and ratios of properties. 
The results obtained show good agreement with other 
experimental data and correlations. 
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TRANSFERT THERMIQUE DANS LES ECOULEMENTS AVEC PARTICULES 

R&um&-Un modele phenomenologique est construit pour des kcoulcments a particules dans les tubes. Le 

melange gaz-solide est represent& comme ttant a densite variable, a chaleur massique variable avec la phase 

solide contribuant aux fluctuactions dans les proprietes moyennes de l’kcoulement. Les equations de quantitt 

de mouvement et d’bnergie sont Ctablies pour un Coulement permanent et en faisant la moyenne, quelques 
nouveaux termes apparaissent &.manant des produits fluctuants. La simple theorie de diffusivitt est utilisbe 
pour obtenir les equations de fermeture pour les demiers termes. Finalement les equations differentielles sont 

rtsolues et les rtsultats sont obtenus pour le coefficient de transfert du melange gaz-solide. 

WARMEUBERGANG IN TEILCHENBELADENEN STRGMUNGEN 

Zusammenfasaung-Ein phanomenologisches Model1 fiir teilchenbeladene Strijmung in Rohren wird 
entwickelt. Das Gas-Feststoff-Gemisch wird modelliert als Fluid mit variabler Dichte und variabler 
Wiirmekapaxitiit, bei dem die feste Phase Abweichungen von den mittleren Eigenschaften der Striimung 
verursacht. Die Impuls- und Energiegleichungen werden fur die stationare Strijmung eines solchen Fluids 
entwickelt, wobei bei der Mittelung einige neue Terme aufgrund der Schwankungswerte auftreten. Eine 
einfache Diffusionstheorie wird angewandt, urn fiir die xuletzt genannten Terme geschlossene Gleichungen zu 
erhalten. Schlieglich werden die resultierenden gewiihnlichen Diierentialgleichungen gel&t, und es werden 

Ergebnisse fiir den WiirmeiibergangskoetRxienten der Gas-Feststoff-Gemische erhalten. 

TEIIJIOIIEPEHOC B IIOTOKAX MAKPOHACTHH 

AeHoTauna-Paspa60TaHa ~eHOMeHOJIOrnWCKaa MOAeJIb AJWI nOTOKOB MaKpOvaCTnn B rpy6ax. CMeCb 

ra3-TBepAbIe SaCTIIAbI paCCMaTpHBaeTCII KaK ZKnAKOCTb C nepeMeHHbIMH IIAOTHOCTbIO II TeIIAOeMKOCTbIo 

C y’IeTOM BKAaAa TBepAOfi @a3bI 80 @IyKTyaIIIIEI CpeAHnX CBOkCTB nOTOKa. &III CTauIIOHapHOrO 

Te’IeHnII TaKOii ~HAKOCTII BbIBeAeHbI ypaBHeHIUI IIMnyAbCa a 3HeprWH, KBK pe3yAbTaT OCpeAHeHna 

nOaBAaeTCa HeCKOAbKO HOBbIX ‘IAeHOB. npH BbIBOAe 3aMKHyTbIX ypaBHeHHii AJIa nOC,IeAHIIX WIeHOB 

ucnonb3yeTcr npocrar annporcahlarrur. llonyvesbl Ii pernew 06bIKHonenHbIe Awc@$epeHueanbebIe 

ypaeHeHan II onpenenenbl B aTore K03@&nmeHTbI Tennoo6MeHa chfeceii ras-TeepAbIe vacTaubl. 


